A finely tuned crosstalk between enteric neurons and muscularis macrophages: evidence from a conditional Knockout mouse model developed by genOway

Matheis F, Muller PA, Graves CL, Gabanyi I, Kerner ZJ, Costa-Borges D, Ahrends T, Rosenstiel P, Mucida D.
Adrenergic Signaling in Muscularis Macrophages Limits Infection-Induced Neuronal Loss.
Cell. 2020 Jan.
A recent study, freshly published in Cell by a group of researchers at Rockefeller University, demonstrates that enteric infections cause rapid neuronal loss via the two non-canonical inflammasomes Nlrp6 and Casp11. This was elegantly demonstrated by infecting conditional Knockout mice with an attenuated strain of Salmonella enterica and, subsequently, quantifying the numbers of enteric neurons.

In addition, researchers found that resident macrophages rapidly respond to enteric pathogens by activating the β2-adrenergic receptor (β2-AR) signaling that, in turn, triggers the synthesis of neuroprotective polyamines, thereby limiting neuronal loss. These findings suggest an extremely sophisticated interplay between enteric neurons and macrophages similar to what has been already described for the central nervous system.
Related products
Catalogue product
Customized product
Scientific excellence
From model design to experimental results
Featured in 600+ scientific articles
Collaborative approach
Collaboration with 17 Top Pharmas,
170+ Biotechs and 380+ Academic Institutions
Robust validation data on catalog models
Generated with biopharma partners and in-house
Innovative technologies
and guaranteed freedom to operate
Easy access to models
Models with certified health status from professional breeders in US and Europe